

Samsung Electronics

ERV NASA - Integration-(Energy recovery Ventilation)

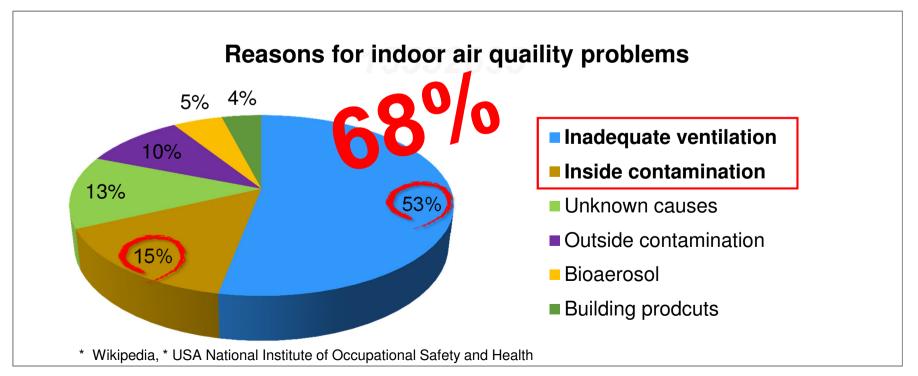
Contents

- Introduction
- Line-up
- **♦** Feature
- Part analysis
- How to design
- How to install
- Application

15552635

Introduction

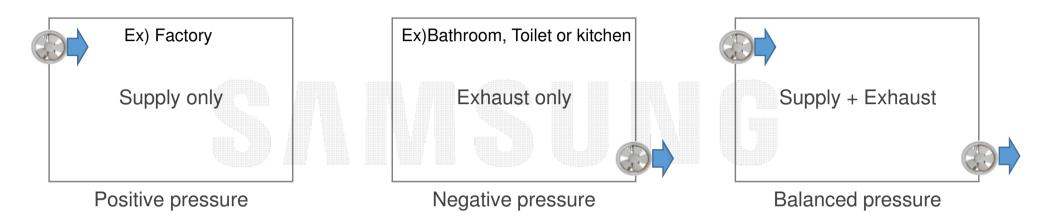
- What is ventilation?
- How to conduct ventilation
- What is ERV
- Psychometric chart & efficiency



What is ventilation?

Ventilation is the process of supplying and removing air by natural or mechanical means to and from any space.

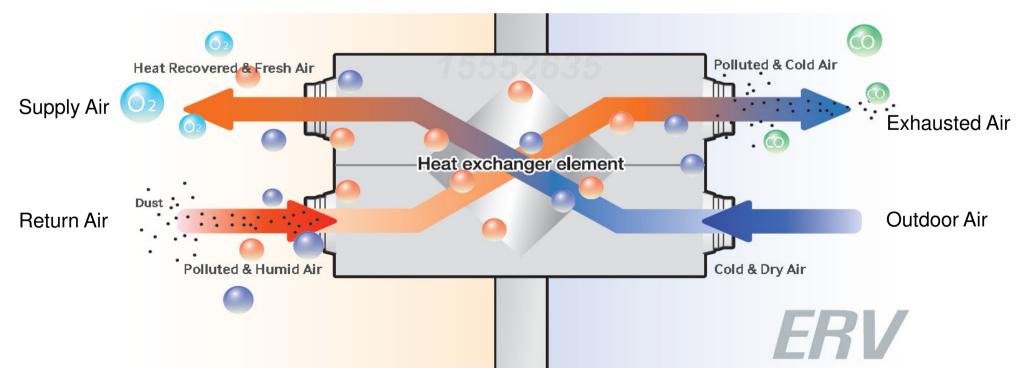
✓ Necessity of Ventilation


Indoor air quality is gaining more and more attention as increasing numbers of people become ill from airborne contaminants. Indoor air contamination is often the cause behind building-related syndromes, such as asthma, headaches and dizziness.

Introduction

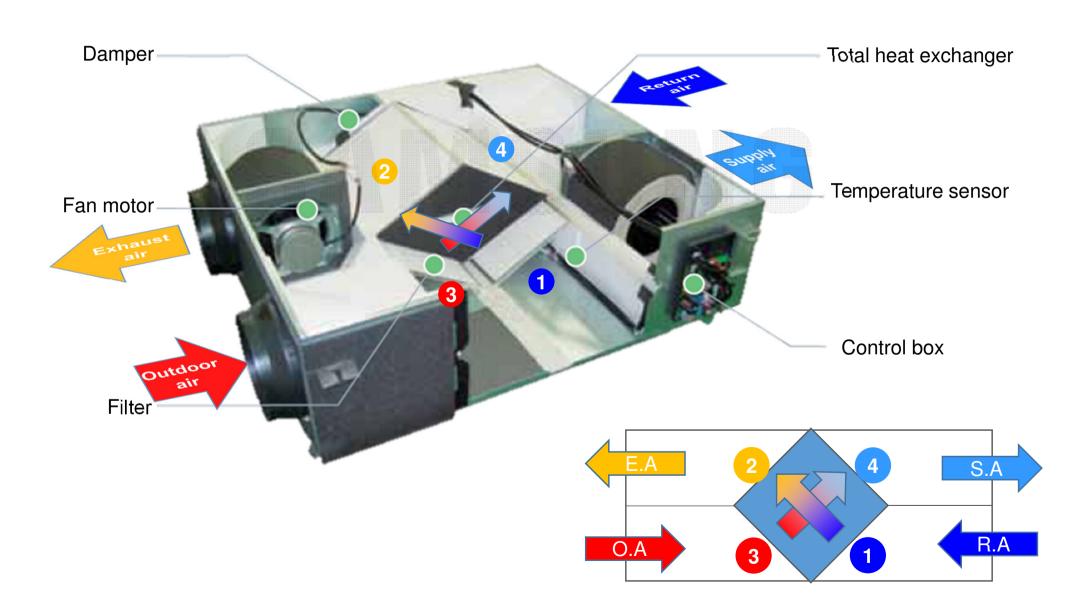
- How to conduct ventilation
- √ 3way to conduct mechanical ventilation

✓ Units for Ventilation in DVM system



What is ERV

The **Samsung ERV** (Energy Recovery Ventilation) system air conditioner provides fresh and healthy air from outside while **minimizing energy loss for maximum efficiency**. Its intelligent structure incorporates features specifically designed for flawless ventilation and efficient operation.


The system recovers **up to 70 percent** of the energy needed to cool or heat the environment. The efficient heat recovery maintains the indoor temperature and humidity during the winter, and prevents outdoor heat and moisture from entering indoors during the summer.

Introduction

■ What is ERV

100 80

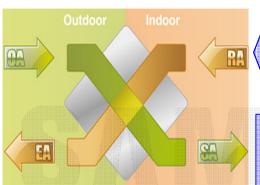
Introduction

■ Psychometric chart & efficiency

Temp: 35°C(DB)

RH:40%RH

AH: 14.1(g/kg)


Enthalpy: 71.5kJ/kg

Temp: 31.7°C(DB)

RH:37%RH

AH: 10.8(g/kg)

Enthalpy: 59.6kJ/kg

Temp: 24°C(DB)

RH:50%RH

AH: 9.3(g/kg)

Enthalpy: 47.8kJ/kg

Temp: 27.3°C(DB)

RH:55.7%RH AH: 12.6(g/kg)

Enthalpy: 59.6kJ/kg

Temperature Efficiency	Enthalpy Efficiency
$= \frac{t(OA) - t(SA)}{t(OA) - t(RA)} \times 100$	$= \frac{h(OA) - h(SA)}{h(OA) - h(RA)} \times 100$
$\frac{(35.0 - 27.3)}{(35.0 - 24.0)} = 70\%$	$\frac{(71.5 - 59.6)}{(71.5 - 47.8)} = 50\%$

Line up

- Line up
- Specification

15552635

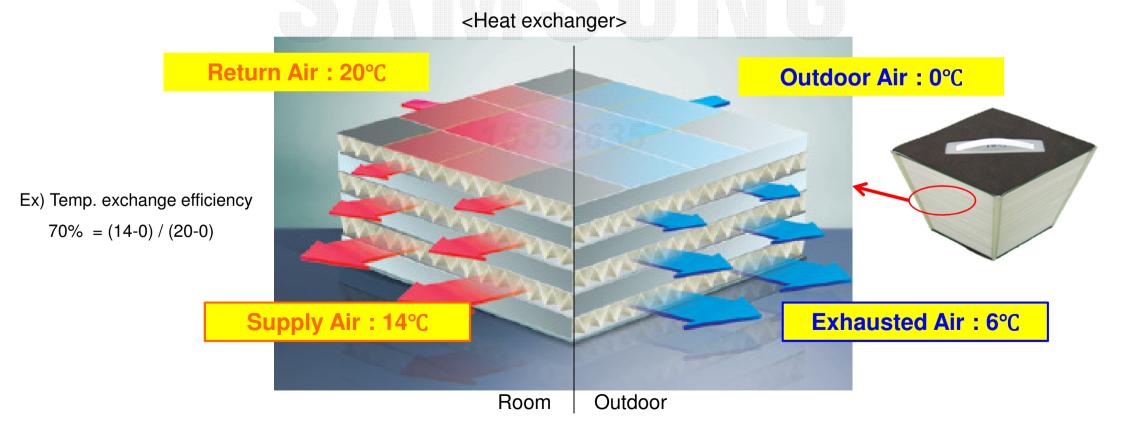
Operating temperature Installation area		Room	Outdoor
Temperature[°C]	0~40	0~40	-15~40
Related humidity[%]	80 or low	80 or low	80 or low

Airflow (m³/hr)	250	350	500	800	1000
Picture					
New Model (NASA)	AN026JSKLKN	AN035***	AN050***	AN080***	AN100***
Old Model (Non NASA)	RH025***	RH035***	RH500***	RH800***	RH100***

Specification

	Model	Name		AN026JSKLKN	AN035JSKLKN	AN050JSKLKN	AN080JSKLKN	AN100JSKLKN
Powe	er Supp	oly	-	1,2,220-240,50/60	1,2,220-240,50/60	1,2,220-240,50/60	1,2,220-240,50/60	1,2,220-240,50/60
	Т	urbo	W	115	115	175	330	450
Power Input	ı	High	W	80	80	120	230	280
		Low	W	45	50	65	125	155
С	urrent		Α	0.7	0.7	1.1	2.1	2.9
Airflow	Turbo	/High/Low	СМН	260 / 250 / 180	350 / 350 / 256	500 / 500 / 360	800 / 800 / 560	1000 / 1000 / 690
E.S.P	Turbo	/High/Low	Pa	100 / 65 / 55	155 / 100 / 83	165 / 100 / 85	155 / 90 / 80	155 / 90 / 75
Temperature	Cool	T/H/L	%	70 / 70 / 74	70 / 70 / 74	70 / 70 / 74	70 / 70 / 74	70 / 70 /74
Exchange Efficiency	Heat	T / H/ L	%	74 / 74 / 75	78 / 78 / 79	74 / 74 / 75	77 / 77 / 78	74 / 74 /75
Enthalpy	Cool	T / H/ L	%	50 / 50 / 55	50 / 50 / 55	50 / 50 / 55	50 / 50 / 55	50 / 50 / 55
Exchange Efficiency	Heat	T / H/ L	%	70 / 70 /76	70 / 70 /76	70 / 70 /76	70 / 70 /76	70 / 70 /76
Sound	Turbo	/High/Low	dB	31 / 28 / 25	32 / 29 / 26	35 / 32 / 28	36 / 33 / 29	37 / 34 / 30
Pressure	(Quiet	dB	22	23	24	25	26
Du	ct size		mm	150	200	200	250	250
Net	weigh	t	kg	28.5	42.5	42.5	67	67
Net dimensi	ions(W	x H x D)	mm	600 x 350 x 600	1012 x 270 x 1000	1012 x 270 x 1000	1220 x 340 x 1135	1220 x 340 x 1135

⁻ Heat Exchange/Temperature Exchange Efficiency, Comply with regulations to promote high efficiency energy devices, [Cooling], Indoor(24°C DB/17°C WB), Outdoor(35°C DB/24°C WB) [Heating], Indoor(22°C DB/13.9°C WB), Outdoor(2°C DB/0.44°C WB)


Features

- Energy saving
- Smart Co2 censor
- Flexible installation
- Bypass mode
- Energy saving mode
- External damper interlocking
- Hood interlocking

- Energy saving
- ✓ Save the ventilation energy up to 70%

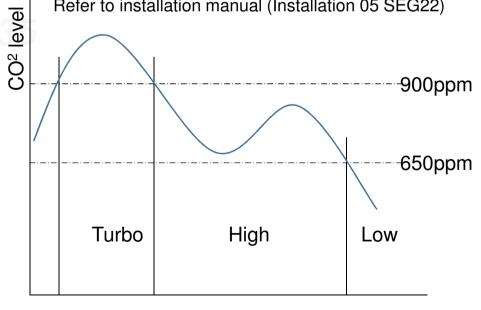
ERV recover the heat energy of exhausted air and reuse it for supply air. This maintains the indoor temperature and humidity during the winter, and prevents outdoor heat and moisture from entering indoors during the summer.

■ Smart Co2 censor

ERV is automatically operated to give fresh air into room by sensing CO2 level.

When the CO2 level increases, the fan will automatically increase speed.

Only the amount of air required to keep the CO2 level on an acceptable level will be ventilated.



Model	:	MOS-C1	(optional)
-------	---	--------	------------

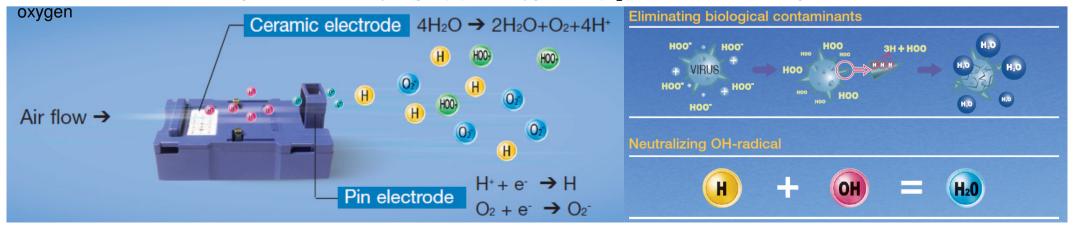
Airflow by CO2	Non NASA	NASA
Turbo	1200ppm ↑	900ppm ↑
Low	800ppm ↓	650ppm ↓

CO2 Concentration value can be changed.

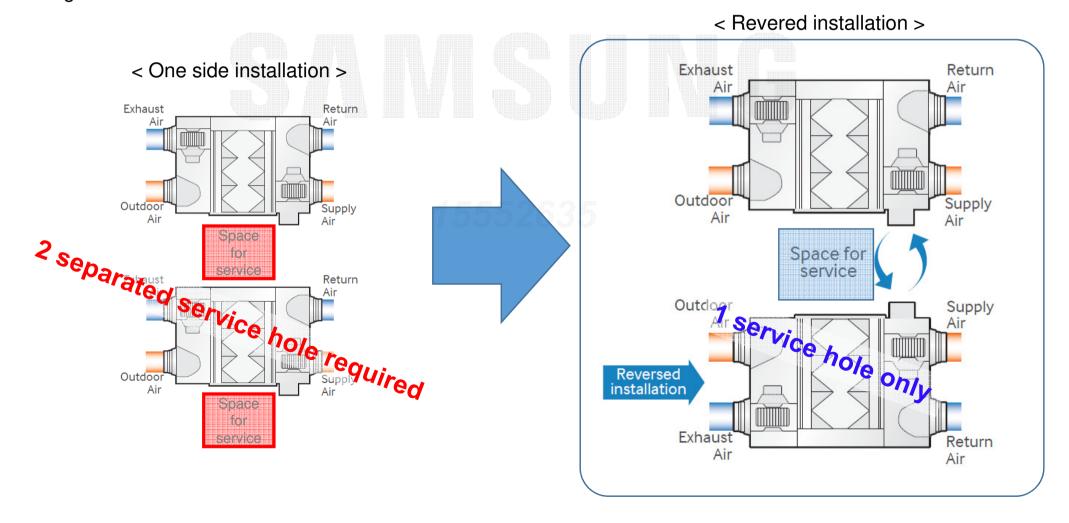
Refer to installation manual (Installation 05 SEG22)


Features

Virus doctor

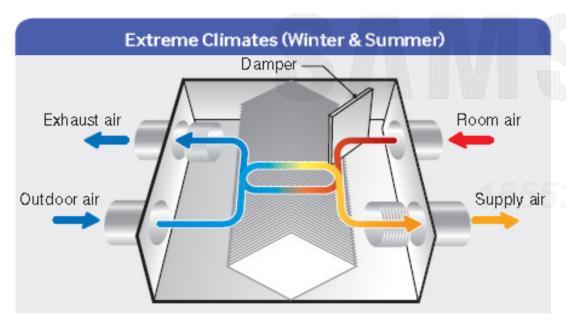

Virus doctor provides the healthy and clean environments by removing viruses, fungi and allergens

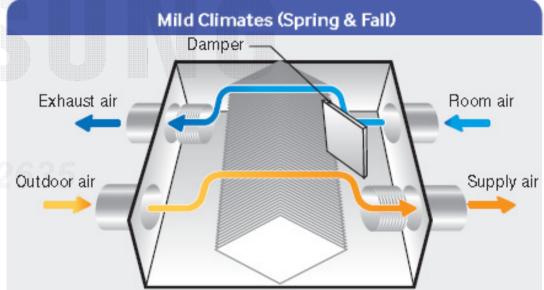
from the air you breathe everyday.


► How it work : Virus doctor generates active hydrogen(H) and oxygen ions(O₂-) which eliminate biological contaminants and active

■ Flexible installation

The ERV system can be installed Upside sown. This feature will save you time on maintenance when installing more than one unit, since you can reduce the number of service hole by installing the ERV with the control box facing one service hole.





Features

■ Bypass mode

ERV automatically changes its operation mode depending on the temperature difference between your indoor and outdoor environment to save energy. (Manual selection also available)

The unit operates as ERV when there is a great difference in the temperature and humidity level between your indoor and outdoor environment.

When the temperature and humidity level difference between your indoor and outdoor is small, it operates as conventional ventilation fan.

■ Energy saving mode (Interlocking with DVM indoor units)

ERV, in combination with air conditioners, provides world-class energy saving solutions to intelligently reduce air conditioner operation hour. This reduces the cooling and heating load while maintaining optimized performance.

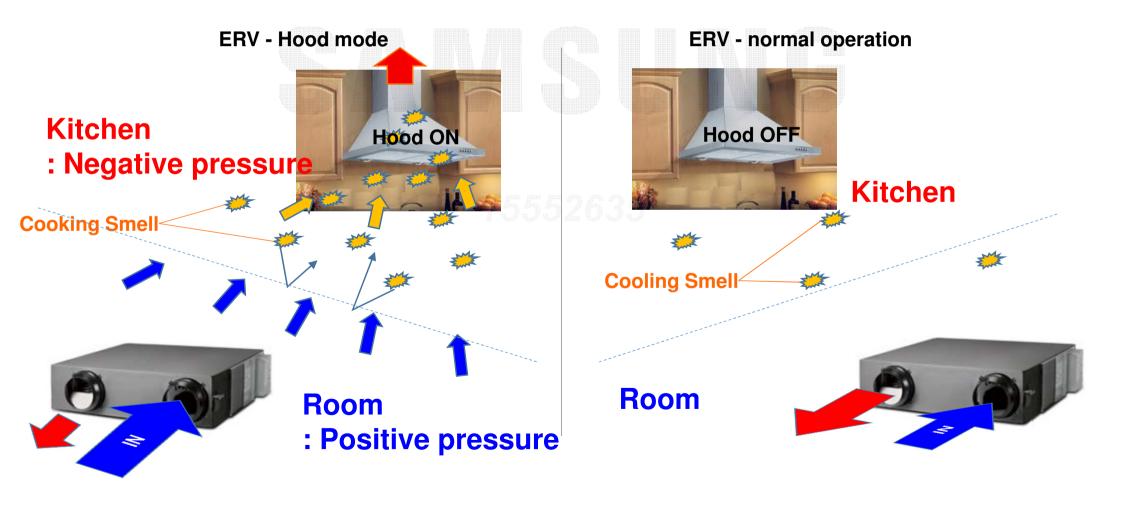
ERV only - Bypass mode

ERV + DVM Indoor unit

18/100

■ External damper interlocking

External damper will be controlled by ERV operation to prevent cold or hot air get in to the room. Also it can prevent dewing on the heat exchanger in winter.

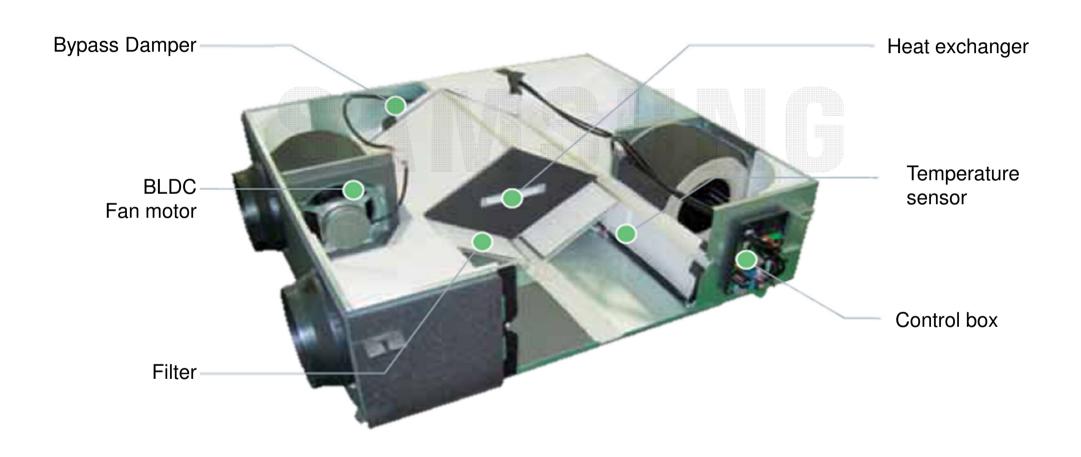


■ Hood interlocking

When hood in on ERV will operate in "hood mode" to prevent smell get in to the room.

* Hood mode : Supply air ↑, exhaust air ↓ → positive pressure in the room.

Part analysis


- Major parts
- PBA

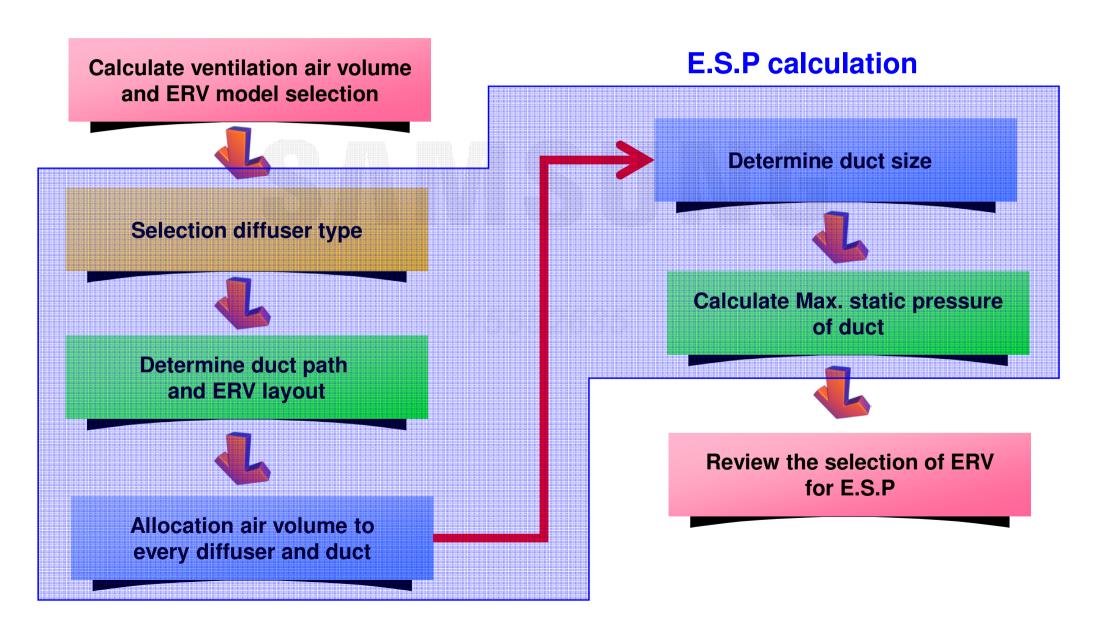
15552635

Part analysis

■ Major parts

Part analysis

■ PBA


1	download
2	eeprom
3	Humidifier sensor
4	CO2 sensor
5	Temperature sensor
6	MIM-B14(Run/Error output)
7	Bypass damper connector
8	External contact input - Hood mode
9	External contact - On/off
10	Virus doctor
11	Comm.(F1,2 / V1,2 / F3,4)
12	Thermal fuse
13	Bypass Damper power connector
14	External damper power
15	Power terminal
16	PLC PBA(wired RC comm.)
17	Display
18	Tact key
19	EA motor power
20	SA motor power
21	Wireless signal receiver

- Design process
- Ventilation rates
- Control system

15552635

■ Design process

Ventilation rates

* Minimum Ventilation rates will be decided by the law of each country.

1. Calculation by Fresh air Requirement per Person

- Ventilation rates(m³/h) = Fresh air requirement[CMH/Person] X Number of occupants[Person]

Space	Fresh air[CMH/Person]	Space	Fresh air[CMH/Person]	
Restaurant	25	Class room	20	
Kitchen	25	Theater	25	
Hospital – ward	30	Office	25	

2. Calculation by Air change rate (when no information about number of occupants)

- Ventilation rates(m³/h) = Volume(m³) X Required ventilation time per hour

Space Air change rate[time/h]		Space	Air change rate[time/h]
Restaurant	6	School - gym	5~10
Kitchen	5~15	Theater	6
Hospital – ward	6	Office	3~10

^{*} ASHRAE recommends ventilation rates dependent upon floor area, as a revision to the 62-2001 standard, in which the minimum ACH(Air change rate/h) was 0.35, but no less than 15 CFM/person (15 CFM/person = 0.425m³/s·person = 25m³/h·person).

■ Calculate ventilation air volume – Example

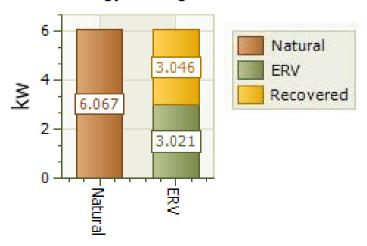
* Use ERV simulation program

✓ Design condition

- Type : Office

- Maximum occupant : 30person

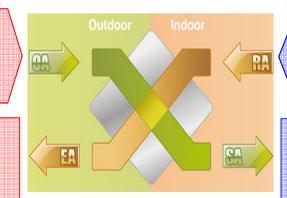
- Design temperature: Cooling - ID 24°C 50%RH, OD 35°C 40%RH


- E.S.P: 120Pa

1. Ventilation rate: 30person x 25CMH = 750CMH

2. Model selection: Select by ventilation rate

Model	AN025***	AN035***	AN050***	AN080***	AN100***
Airflow rate(CMH)	250	350	500	800	1000
E.S.P[Pa]	110	155	165	155	155
Selection	X	X	X	0	Δ


3. Energy saving result

Temp: 35°C(DB)
RH:40%RH
AH: 14.1(g/kg)
Enthalpy: 71.5kJ/kg

Temp: 31.7°C(DB) RH:37%RH

AH: 10.8(g/kg) Enthalpy: 59.6kJ/kg

Temp: 24°C(DB) RH:50%RH

AH: 9.3(g/kg)

Enthalpy: 47.8kJ/kg

Temp: 27.3°C(DB) RH:55.7%RH

AH: 12.6(g/kg)

Enthalpy: 59.6kJ/kg

■ Practice 1

✓ Design condition.

- Type : Office

- Maximum occupant : 20person

- Design temperature : Cooling - ID 22°C 50%RH, OD 33°C 40%RH

1. Calculate required ventilation rate

2. Select proper ERV model

Model	AN026***	AN035***	AN050***	AN080***	AN100***
Airflow rate(CMH)	260	350	500	800	1000
E.S.P[Pa]	100	155	165	155	155

- 3. How much energy[kW] saved by using selected ERV model.
 - * Assume energy efficiency of AC as cooling 3.0kW/kW, heating 4kW/kW

Category	Cooling	Heating
Saved ventilation load by ERV[kW]		
Energy saving by ERV[kW]		

■ Practice 2

✓ Design condition.

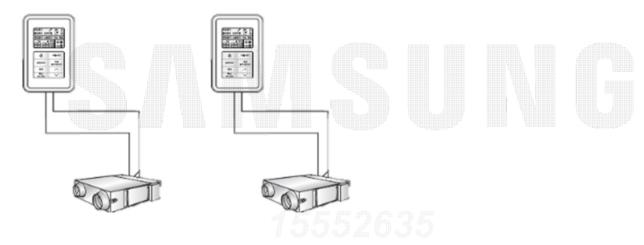
- Type : Restaurant

- Maximum occupant : 100person

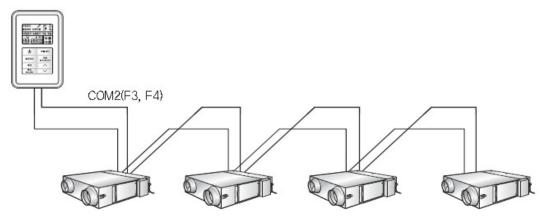
- Design temperature : Cooling - ID 25°C 50%RH, OD 38°C 40%RH

1. Calculate required ventilation rate

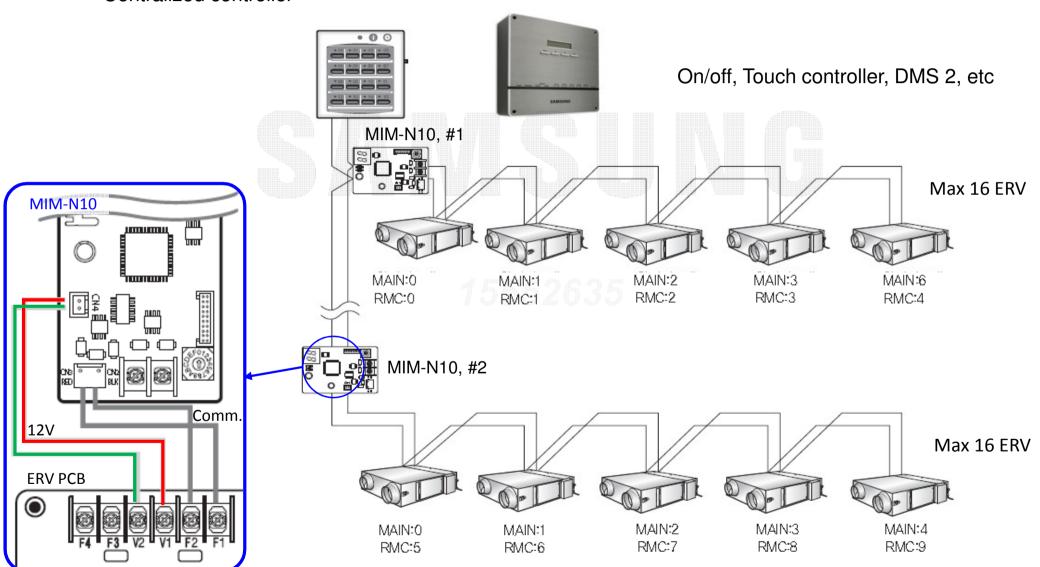
2. Select proper ERV model


Model	RHF025***	RHF035***	RHF050***	RHF080***	RHF100***
Airflow rate(CMH)	250	350	500	800	1000
E.S.P[Pa]	110	155	165	155	155

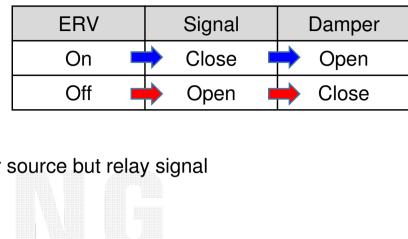
- 3. How much energy[kW] saved by using selected ERV model.
 - * Assume energy efficiency of AC as cooling 3.0kW/kW, heating 4kW/kW

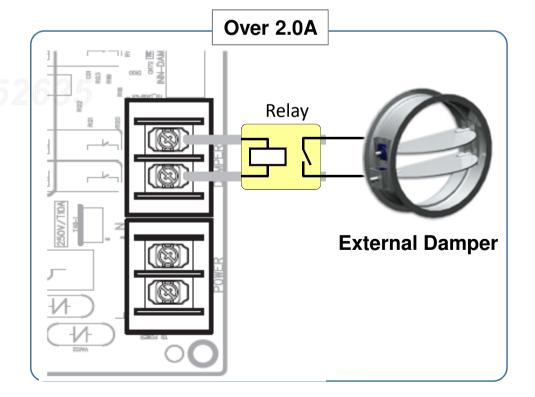

Category	Cooling	Heating
Saved ventilation load by ERV[kW]		
Energy saving by ERV[kW]		

- Control system
- ✓ Wired remote controller
 - 1wired remote controller with multiple ERV

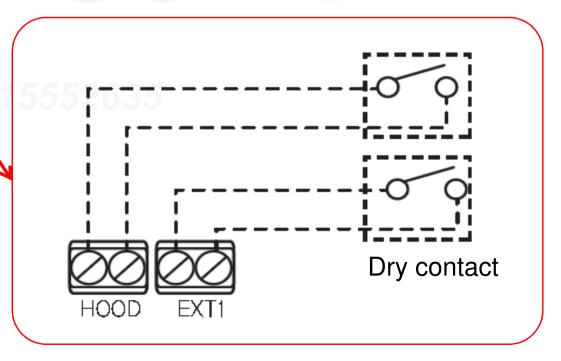


- 1wired remote controller with multiple ERV(Max 16ea)


- Control system
- ✓ Centralized controller



- Control system
- ✓ Interlocking system
 - External damper control
 - : Output signal 220V, Max 2.0A
 - * If the maximum current is over 2.0A do not use this as power source but relay signal
 - * Damper must be supplied from local market

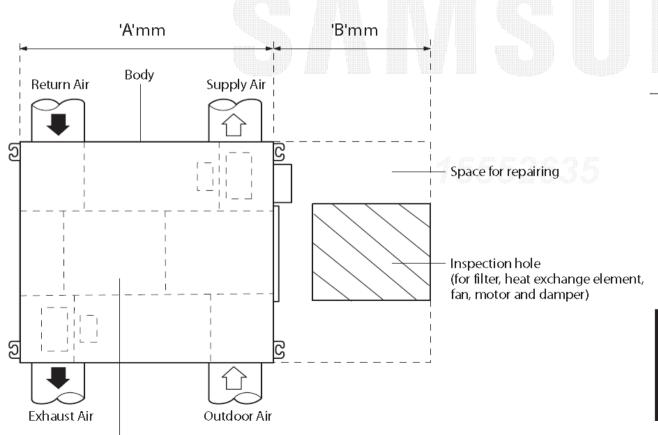

	Under 2.0A	
WAGS WAGS WAGS WAGS WAGS WAGS WAGS WAGS		External Damper

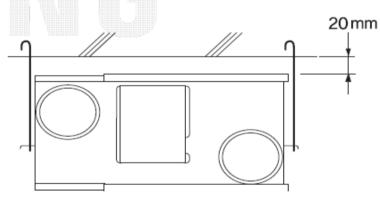
- Control system
- ✓ Interlocking system
 - 2kinds of External control with dry contact
 - ├ Hood : if the signal is close, S.A = Turbo, E.A = Low to make a positive pressure in the space.
 (Hood can exhaust smell easily)

33/100

How to install

- Installation condition
- Installation diagram
- Address setting
- Installation option setting
- Display
- Tact key function

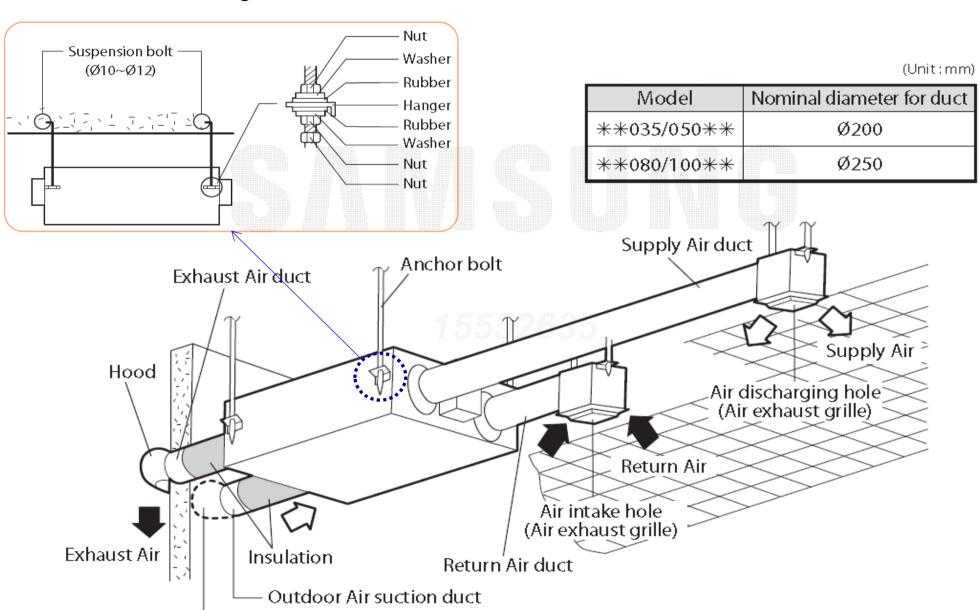

15552635



How to install

■ Installation condition

Category	Installation space	Outdoor air condition	Indoor air condition
Temperature	0~40°C	-10~40°C	10~40°C
Humidity	RH80% ↓	RH80% ↓	RH80% ↓


Model	'A'	'B'
035/050	1000	600
080/100	1135	800

Heat exchange element

How to install

■ Installation diagram

Hood

■ Address setting

Option No.: 0AXXXX-1XXXXXX-2XXXXXX-3XXXXX

Option	tion SEG1 SEG2 SEG3 SEG4 SEG5 SEG6							i6		
Explanation	PAGE	Mode		Setting Main address unit address unit		findoor				
Remote Controller Display		Auto	Auto		Cool		Cool			
	Indication Details	Indication Details	Indication	Details	Indication	Details	Indication	Details	Indication	Details
Indication			0	No Main address						
and Details	0	A	1	Main address setting mode	0~9	100-digit	0~9	10-digit	0~9	A unit digit
Option	SEG7	SEG8	SEG	59	SEG	510	SEG11		SEG12	
Explanation	PAGE		Setting R/V	IC address			Group channel (*16)) Group address	
Remote Controller Display			88	Fan			8 8	Heat	<u>8</u>	Heat
	Indication Details	_	Indication	Details	_	_	Indication	Details	Indication	Details
Indication			0	No RMC address						
and Details	1		1	RIMC address setting mode			RMC1	0~F	RMC2	0~F

■ Installation option setting

Use wired or wireless remote controller to set the option.

* Wireless signal receiver is added.

Installation option	Seg	Option	Set
	5	Centralized controller	0 : Disuse
1	, O	Certifalized Controller	1 : Use
02	16	Virus doctor	0 : Disuse
02	10		1 : Use
	18	Filter alarm	2:1000 hours
		Filler didiffi	6 : 2000 hours
	1.1	Co2 Sensor	0 : Disuse
05	14	Coz Sensor	1 : Use
05	15	External Damper	0 : Disuse
	15	External Damper	1 : Use

How to install

■ Display

SEG1 SEG2

SEG3 SEG4

SEG 1: Displays "U" when an indoor unit communicates with a wired remote controller

SEG 2 : RMC2 address(0~F)

SEG 3 & 4 : Main address(00~15)

Example)

- 1. Wired remoter controller is connected
- 2. RMC2 address is "7"
- 3. Main address of ERV is "08"

How to install

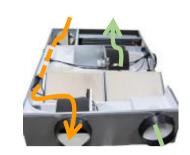
■ Tact key function

K1	Function	ovamnio	Segment				
Push	Function	example	SEG1	SEG2	SEG3	SEG4	
1	Test Run start	-	-	1	-	1	
2	Test run stop	-	-	-	-	-	

K2	Display	example	Segment					
Push	ыѕріау	example	SEG1	SEG2	SEG3	SEG4		
1	Exhaust fan RPM	1350RPM	1	1	3	5		
2	Supply fan RPM	950RPM	2	-	9	5		
3	Room temp.	25℃	3	-	2	5		
4	Outdoor temp.	30°C	4	-	3	0		
5	Co2 level	1,220ppm	5	1	2	2		
6	ERV quantity	3units	6	-	-	3		
7	Indoor Humidity(ERV+only)	40(if no function 00)	7	-	4	0		
8	Outdoor Humidity(ERV+only)	50(if no function 00)	8	-	5	0		
9	None							

▶ When you press and holde the KEY2 switch for more than 3 seconds, PBA will be reset (in 40sec.)

Application


- Bypass control in Auto mode(Ventilation only)
- Self adjustment in low temperature
- IDU + ERV on/off control
- Wired remote controller setting
- E. Saver
- Tact key function

Application

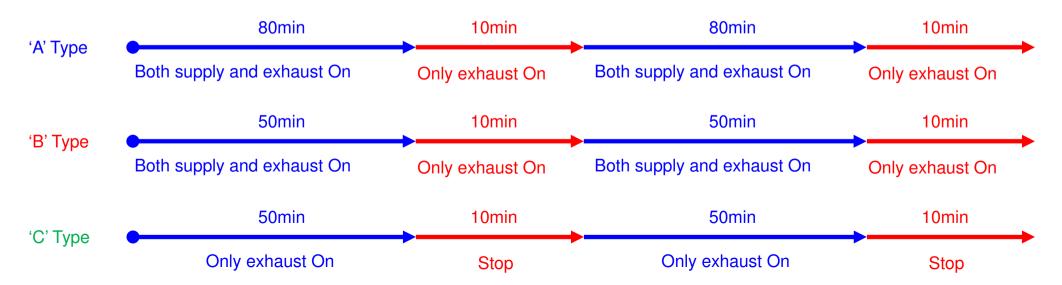
Bypass control in Auto mode(Ventilation only)

When the system is operating in Auto mode, bypass damper will be controlled automatically according to the $\triangle T$.

*Bypass damper will be fixed for minimum 30mins with selected mode

 $\triangle T$: room temperature - ambient temperature

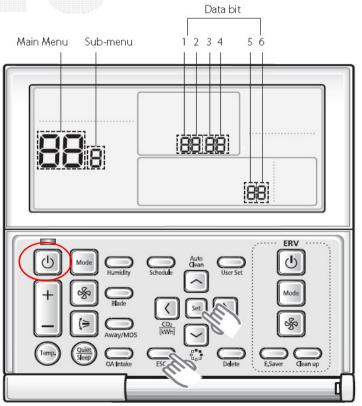
Condition	Operation Type	Bypass Damper
△T≥±5℃	Normal operation(heat exchange mode)	Close
△T<±5°C	Operation as a convention ventilation fan(Bypass mode) New (*Installation option: 05 Seg. 21) Room temp. > Fresh air cooling set temp. ≥ Outdoor temp.(15°C) *Fresh air cooling set temp. range: 18°C~ 26°C	Open


^{*} Refer to installation manual.

Self adjustment in low temperature

✓ Self adjustment depending on outdoor temperature to prevent it from being iced on element. (This will be ignored when the ERV is in bypass mode)

Outdoor Temp	Operation Type	Supply	Exhaust	
Above 0°C	Normal Operation	On	On	
$0 ^{\circ}\text{C} > \text{T}_{\text{OA}} > -5 ^{\circ}\text{C}$	"A" Type Cyclic Operation			
-5 °C > T _{OA} >-10 °C	"B" Type Cyclic Operation	Refer to below operation pattern		
-10 °C > T _{OA} >-15 °C	"C" Type Cyclic Operation			
Below -15 °C	Stop the ERV	Off	Off	


- IDU + ERV on/off control
 - ✓ User mode(MWR-WE10N)

7	Ventilator (ERV) delay time setting/checking	Ventilator(ERV) Delay Application (Y/N)	1	0	0-No use, 1-Use	-
,	[When using Ventilator (ERV) interlocking control]	Delay Time	3,4	30	30~60 minutes	1 minute

If indoor unit & ERV is controlled by 1 remote controller & AC on/off button is set as "1 (IDU+ERV)"

- → AC on button push: Indoor unit on & ERV will be on in 30mins.
- ✓ SVC mode(MWR-WE10N)

1	2	AC On/Off button function	5	0	0 – Indoor unit + ERV, 1 – Indoor unit only, 2 – ERV only,

■ Wired remote controller setting

✓ Service mode (MWR-WE10N)

1 4			Use of By-Pass mode	1	0	0 – No use, 1 - Use	-
	ERV option	Use of Auto mode	2	0	0 – No use, 1 - Use	-	
	4	Setting/checking	Use of air purification mode	3	0	0 – No use, 1 - Use	-
			Use of external control	4	0	0 – No use, 1 - Use	-

- Default mode without setting : Heat-EX mode, Quiet mode, Away mode
- * Air purification mode is not available.
- Use of external control: Just display **External** LCD to notice external control may working.
 - → To control the ERV by external contact, please set the ERV installation option.(SEG14)

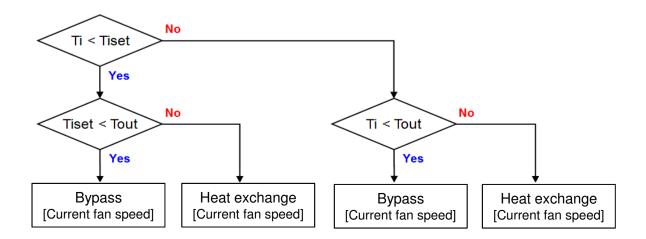
■ E. Saver

✓ Service mode (MWR-WE10N)

1		8	Set/CheckERV Energy saving	Select individual Energy saving operation	1	0	0-ON/OFF alternating operation, 1-Outdoor air cooling operation for different temperature setting	-
			operation -	Minimum temperature of outdoor air cooling	3,4	15	5~15°C(41~59°F)	°C

- 1. ERV only Installation
 - Seg 1: To select operation mode of Energy saving when **only ERV** is installed.
 - 0 (On/Off alternation): 30 mins on 30 mins off repeating
- 2. ERV + IDU Installation
 - Seg 3,4: The temperature range can be varied 5~ 15°C. (Refer to the next page)
 - Bypass or Heat exchanger mode operation according to condition

Prerequisite condition


- No option setting of central control (02 Series, SEG5)
- Hood mode: Off
- Indoor unit and ERV: On
- No fan mode of Indoor unit

Application

■ E. Saver

1) Cooling operation - Ti: room temp. No Ti > Tiset - Tiset : Set temp. of room , Yes (Cooling: 26°C, heating: 22°C) No No Tiset > Tout Ti > Tout Tout : Outdoor temperature Yes Yes No **₹**15 < Tout < Tiset *15 < Tout ↓ Yes Yes Heat exchange **Bypass** Heat exchange **Bypass** [Current fan speed] [Current fan speed] [Current fan speed] [Current fan speed]

2) Heating operation

^{*} The range of can be varied from 5 to 15°C.

SAMSUNG

15552635

Samsung Electronics
THANK YOU